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ABSTRACT
In today’s world, sleep quality is pivotal for overall well-being.
While wearable sensors offer real-time monitoring, they often lack
actionable insights, leading to user abandonment. This paper delves
into the role of technology in understanding sleep patterns. We
introduce a two-stage framework, utilizing Large Language Models
(LLMs), aiming to provide accurate sleep predictionswith actionable
feedback. Leveraging the GLOBEM dataset and synthetic data from
LLMs, we highlight enhanced results with models like XGBoost.
Our approach merges advanced machine learning with user-centric
design, blending scientific accuracy with practicality.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Human-
centered computing → Human computer interaction (HCI);
• Applied computing→ Life and medical sciences.

KEYWORDS
Sleep Prediction; Large Language Model; Machine Learning; Inter-
active User Interface;

1 INTRODUCTION
In the modern age, the adage "health is wealth" becomes increas-
ingly apparent, not just in terms of physical but also mental. One
critical but often overlooked aspect of overall health is the quality
of sleep. Although sleep is seemingly physical, it could have far-
reaching implications for mental health, productivity, and overall
quality of life. Technologies such as wearable sensors have paved
the way for real-time monitoring of sleep patterns, promising in-
sights into this complicated and crucial behaviour.

However, while wearable sensors have provided a technological
leap in self-quantification and health monitoring, they are not with-
out their challenges. Research has shown that people often abandon
these devices due to unsatisfactory results or a lack of actionable
insights. However, these sensors have the potential for lifestyle
and health improvement, as poor sleep is not just an isolated issue
but often a symptom or cause of other health problems, such as
depression. Therefore, we studied essential factors that impacted
sleep quality and developed a graph-based interface and Large Lan-
guage Models that guide users to gain valuable insights into their
behaviour and detect ways of lifestyle improvement.

∗All authors contributed equally to this research.
* The work is a result of the UbiComp/ISWC ’23 Student Challenge.

2 MOTIVATION
The intricate relationship between sleep and health attributes, such
as mental health or physical activity, has garnered significant at-
tention in scientific literature. These studies have delved into corre-
lation analysis of such attributes and ushered in advanced medical
research. Notably, they have provided insights into illness detection,
ranging from depression and diabetes to Parkinson’s disease.

Another study [4] incorporated data from smartphones, Fitbit
devices, weather conditions, and personal calendars to predict sleep
duration. In this context, smartphone data gives information on
proximity to other phone users, screen time, communication his-
tory, and geo-location. Fitbit data provided metrics like heart rate,
physical activity, and sleep status. By leveraging the General Lin-
ear Model (GLM) and the General Linear Mixed Model (GLMM),
they fine-tuned their input factors by eliminating multicollinearity
and considering feature importance. Their findings underscored
the high correlation between most studied factors and sleep dura-
tion, reporting a correlation coefficient of 0.745 between actual and
estimated sleep duration. Although their primary focus was corre-
lational analysis, the parallels between their chosen input features
and ours set the groundwork for our research.

Figure 1: Wordcloud of Quoras and Reddit Dataset

Building on the wearable devices narrative, Attig and Franke
[1] found that many individuals abandoned these gadgets due to
unsatisfactory results. To better understand this phenomenon, we
analyzed sleep-related questions on popular online platforms like
Reddit [9] and Quora [7] (See Fig. 1). Common queries, such as
"How do I fix/change/maintain a sleep pattern?" and "I need help
to get me to sleep; I start University soon and can’t maintain a
steady sleep pattern!" revealed a challenge. Such abstract questions
suggest that users might lack a clear understanding of sleep, making
it challenging to seek precise solutions. This knowledge gap could
demotivate users from using wearable devices for sleep tracking.
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Drawing from these studies, an evident gap emerges. While the
correlation and prediction of sleep patterns have been substantially
explored, there is a pressing need for an integrated solution that
not only predicts but also offers actionable insights. Enter Large
Language Models (LLMs). The advent of LLMs, especially mod-
els like GPT-3, has reshaped the landscape of natural language
processing. These models enable intelligent interactions between
humans and technology, ushering in possibilities for improved user
experience and potential behavioral modifications. By addressing
the limitations of wearables with the capacity for personalized
communication, LLMs have the potential to re-engage users. Our
research seeks to harness the capabilities of LLMs, aiming to revo-
lutionize sleep monitoring by combining accurate predictions with
actionable behavioral improvements.
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Figure 2: Overview of the proposed framework

3 PROPOSED FRAMEWORK
3.1 Overview
The primary focus of this project is to present a holistic, interactive
model to help users better understand their sleep. We propose a
detailed two-stage framework (Fig. 2). This framework consists of a
Training Stage and a Demo Stage, which functions collaboratively
to build a predictive model and an interactive user interface.

3.1.1 Training Stage. We used data and features from the GLOBEM
dataset [17], which contains diverse user behavioural information,
including location, phone usage, call logs, step count, Bluetooth,
and Wi-Fi connection. We undertook statistical analysis to identify
variables that strongly correlate with sleep quality and further filter
features using feature importance ranking.

Subsequently, we ventured beyond conventional feature anal-
ysis. A hypothesis was proposed: Could synthetic data generated
from state-of-the-art Large Language Models (LLMs) enhance the
model’s predictive power? These LLMs are adept at replicating
the natural variance of human behaviour and environmental inter-
actions. Therefore, by introducing this method, we aimed to test
whether such augmentation would bolster the model’s performance
or inadvertently introduce noise and complexities.

3.1.2 Demo Stage. The second stage is designed to offer an inter-
active experience for end-users via a chat application1. This stage
is divided into five distinct parts, as elaborated below:

• User Interaction via LLMs: The Demo Stage has been
designed to simulate a real-world application of the trained

1https://github.com/MarwahAlaofi/UbiComp23-student-challenge/

Figure 3: Demo interface

model. A chat application, fortified by a Large Language
Model (LLM) API, serves as the front-end interface. Users
will see a range of suggested questions when they interact
with the chatbot, including queries about their anticipated
sleep quality for the night.

• Sleep Quality Prediction: When a user opts to investigate
their sleep quality, the system swiftly deploys the predictive
model honed during the Training Stage. This model consid-
ers the top 20 important features ranked during analysis to
generate a prediction.

• Testing Sample Acquisition: To enact this demonstra-
tion, we assume the passive acquisition of relevant user
data through the chatbot installed on their devices. A rep-
resentative testing sample will be culled from the GLOBEM
dataset, which comprises the features earmarked as impor-
tant during the Training Stage.

• Predictive Responses and Interactive Graph: The sys-
tem offers an interactive element beyond text-only. The
LLM API generates textual advice or comments based on
the predicted sleep quality. Furthermore, an interactive
graphical interface allows users to modify key features to
see their real-time impact on predicted sleep quality. (Fig.
3)

• Personalized Recommendations: Finally, the application
auto-generates pragmatic suggestions tailored to the user’s
lifestyle and environment. By setting thresholds and ma-
nipulating feature values, the system explores how minor
adjustments can lead to significant improvements in sleep
quality

3.2 Dataset
The GLOBEM dataset [17] offers a multi-year mobile and wearable
sensing data collection from 2018 to 2021. Over these four years, the
dataset captures information from various cohorts: INS-W_1 (2018),
INS-W_2 (2019), INS-W_3 (2020), and INS-W_4 (2021). This project
exclusively uses the INS-W_1 set, which offers a glimpse into user
behavior before the disruption of the COVID-19 pandemic.

The core objective of the dataset is to serve as a foundational
platform for comparing behavior modeling algorithms, examining
cross-dataset generalization tasks, and fostering the development of

https://github.com/MarwahAlaofi/UbiComp23-student-challenge/
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more comprehensive longitudinal behavior modelling algorithms
by ML and UbiComp researchers.

The data was collected via a self-developed mobile app with
the AWARE framework, which continuously gathers data such as
location, screen status, Bluetooth scans, and call logs. The app is
compatible with iOS and Android and seamlessly works in the
background once installed on participants’ phones. Additionally,
participants were equipped with Fitbits to record their physical
activity and sleep patterns. This combination ensured a passive 24/7
data collection, with an average participation duration of 78 days
per individual each year. Surveys regarding physical and mental
health, social issues, and substance use were also administered
during the study period.

3.3 Data Prepossessing
The dataset offers hundreds of features. To reduce feature dimen-
sions, we conduct a comprehensive, selective framework to develop
our predictive machine learning model. The task is to predict the
‘sleep efficiency’ on a coming day; hence, we select the ‘sleep sum-
mary average efficiency’ calculated by the Fitbit wearable as our
target variable. The historical value for sleep efficiency is derived
to derive meaningful insights by shifting the target variable by one
row and eliminating the first index for every participant (pid). This
is essential since the initial index for each participant lacks the
preceding day’s data. Rows containing missing values for the target
variable were excluded.

Pertinent features from Bluetooth, call, location, screen, and
steps were incorporated to enrich our dataset. These features were
meticulously chosen based on their relevance and prominence in
current literature related to sleep patterns. Recognizing the po-
tential of these features to provide a comprehensive insight into
sleep quality, we conducted an exhaustive review of existing studies.
The subsequent list details these features, supported by pertinent
literature to bolster their credibility and relevance:

• surrounding Bluetooth devices: the proximity and num-
ber of surrounding Bluetooth devices can offer insights
into an individual’s social interactions and ambient envi-
ronment, both of which have been linked to sleep quality
[16].

• phone call: Frequency, duration, and timing of phone calls
can hint at an individual’s social commitments and stress
levels, which are known factors affecting sleep [12, 14].

• location: an individual’s location, particularly visits to
green spaces, might suggest relaxation activities beneficial
for sleep. Conversely, nighttime urban activity might dis-
rupt sleep. Green spaces are linked with relaxation and
potentially improved sleep quality [8, 18].

• screen usage: excessive screen time, especially before bed-
time, correlates with sleep disturbances due to the blue light
emitted from screens [6, 12, 15].

• steps: physical activity levels, measured through steps, can
provide an understanding of fatigue levels, which directly
impact sleep quality [3, 13].

Understanding the rationale behind the selection of these fea-
tures, grounded in prior research, reinforces the robustness of our

approach and provides a credible foundation for our sleep pre-
diction endeavors. It also avoids overfitting issues by including a
selective set of features.

Following this, we merged these datasets with the sleep dataset.
Since the dataset spans 6177 rows, ensuring that each feature
presents substantial information is imperative. As such, 49 columns
inundated with ‘n/a’ values, specifically those with more than 30%
(about 1853) such entries, were removed. We also removed the rows
based on the outliers of some key features, such as screen time,
sleep duration, and step count. We used the Tukey method to re-
move the outliers based on lower and upper fences. To deal with
the missing values of each feature, we filled it with the mean values
of each participant. Furthermore, columns with weak correlations
(𝑟 < .001) with the target variable were pruned.

3.4 Data Generation
In our next stage, we employed the predictive capabilities of Large
Language Models (LLMs). Our primary goal was to emulate the
intricate patterns seen in the actual participant data. Starting with
sample selection, a subset comprising 20 samples, equivalent to
roughly three weeks of data, was meticulously chosen for each par-
ticipant. This duration was perceived as adequate for encapsulating
the significant behavioral tendencies of an individual.

These chosen samples were methodically transformed into a
table-format prompt to guide the LLM’s data generation task. This
structured presentation offers clarity and ensures the LLM can
seamlessly pick up on the dataset’s inherent temporal patterns and
subtle nuances. With these prompts at the ready, our next course
of action involved the OpenAI API, harnessing the power of LLMs
to extrapolate from the given data. For each structured prompt
based on one participant’s data, the model was asked to generate
new data for five additional days, taking cues from the preceding
week’s patterns. However, not all generated data met our rigorous
standards. In situations where the generated data did not encompass
all requisite features, we manually pruned such data to maintain
the dataset’s integrity and coherence.

Once generated, this new set of data was integrated with the
original training set. This augmented compilation provides a larger
volume of data and potentially encompasses amore diverse set of be-
havioral variations. After the augmentation process, we conducted
a rigorous evaluation to gauge the impact of the LLM-generated
data on model performance, keenly observing if it played a role
in enhancing the training outcomes. This endeavor aimed to shed
light on the potential merits of using LLMs for data augmentation
in behavioral predictive modeling.

4 EXPERIMENT AND RESULT
4.1 Experiment Setting
For our experimental design, we partitioned the data into distinct
sets: 64%was allocated for training, 21% for validation, and 17% (last
14 days) for testing. Given the nature of our research objective, we
approached this task as a regression problem. We evaluated various
regression models, including Random Forest (RF) [2], CatBoost
(CatB) [10], and Gradient Boosting (XGB) [5]. The target variable
is not normally distributed (𝑠𝑡𝑑 = .058). Thus, we use Mean as the
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baseline; it is expected that themean baseline achieves a comparable
accuracy.

Two feature selection approaches were compared: manually cu-
rated features and the top-𝐾 features. As our project aims to provide
sleep insights, we carefully select features by considering whether
the users can understand and adjust to improve their sleep. Then,
the top-𝐾 is chosen by comparing the influence on the perfor-
mance with different 𝐾 and the best-perform model. Lastly, the
top 20 features (from CatB) perform the best. We have also tried
the permutation feature importance and attention-based feature
importance from a Long short-term memory (LSTM) model [11];
however, the results are not better than the ML model-based ap-
proach. The inclusion of LLM-generated data in the training set
was also investigated for its potential performance boost.

The evaluation metrics reported are Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and 𝑅2 score. These metrics
collectively offer a comprehensive view of model accuracy, error
magnitude, and the proportion of the variance for the dependent
variable explained by independent variables.

4.2 Result & Discussion
4.2.1 Performance of Different Features. Overall, the CatB model
achieves the best performance across all rounds. With the 66 hand-
picked features, all the models achieved similar RMSE and higher
𝑅2 than the baseline. We then select the top 20 features computed
by the CatB model. With the top-20 features, all models have much
lower RMSE, MAE, and higher 𝑅2. CatB is still the best model.

4.2.2 Performance of Specific Models. After integrating the gen-
erative data, particularly in the experiment with top-𝐾 features,
an intriguing pattern emerged in the performance metrics. XGB
markedly improved, while CatB and RF exhibited slight perfor-
mance degradation. This divergence necessitates a deeper exami-
nation into the inherent qualities of these models.

XGBoost, known for its paralleled gradient boosting mechanism,
inherently benefits from larger datasets. The added generative data,
which emulates diverse patterns from the original set, likely com-
plemented XGB’s capability to train numerous models on diverse
subsets and then amalgamate their performances. Furthermore,
the regularization aspects intrinsic to XGB aid in generalizing the
model, making it adept at handling the nuances the generative data
introduces.

On the contrary, CatB is renowned for its symmetric tree build-
ing and ordered boosting. Although efficient and a guard against
overfitting, the symmetric trees might not be as flexible as the more
dynamic trees that XGB creates. While CatB’s ordered boosting

Features (N) Hand-picked(66) Top-k(20) Top-k(20)+G

Model/Metric RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

Mean Baseline .059 .032 −.007 .059 .032 −.008 .059 .032 −.008
Random Forest .059 .033 .018 .054 .032 .013 .055 .032 .032
XGBoost .057 .037 −.003 .050 .035 −.150 .050 .034 −.153
Catboost .054 .031 .116 .049 .030 .124 .050 .030 .102

Table 1: Test Performance of models. G: LLM-generated train-
ing data.

Mean RF CATB XGB
0.040

0.045

0.050

0.055

0.060

0.065

0.070

RM
SE

Test Result
N66
N20
N20+G

Figure 4: RMSE test results. N: number of features. G: LLM-
generated training data.

often prevents target leakage and overfitting, it’s possible that the
subtle intricacies of the generated data, which are designed to cap-
ture complex behavioral patterns, may not align perfectly with
CatB’s strict ordering and thus lead to a slight performance dip.

Random Forest, an ensemble of decision trees, prioritizes diver-
sity in its trees. While the generative data introduces diversity, it
may also introduce noise or intricacies that Random Forest doesn’t
capture as adeptly as gradient-boosted models like XGB.

In summary, while CatB displayed the best overall performance,
the results hint at the potential of our framework to be particularly
synergistic with specific models, like XGB, significantly when lever-
aging generative data. This underscores the significance of under-
standing model intricacies when augmenting datasets, highlighting
the potential for future research in bespoke data augmentation
tailored to specific model architectures.

5 CONCLUSION
To promote the usage of wearable devices by leveraging explain-
ability and interactability, this project proposes a novel two-stage
framework. The framework merges Machine Learning and Large
Language Models with an engaging user interface. It includes rigor-
ous data analysis and instant user feedback, producing promising
results and practical accessibility. This framework pioneers a fresh
approach to sleep research and personalized healthcare domains.
We believe our exploration shed light on the impact of integrating
synthetic data and offered valuable insights into its implications
for predictive modelling in sleep quality.
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ETHICS STATEMENT
We’re exploring the realms of sleep health by integrating Ma-
chine Learning and Large Language Models, utilizing data from
the GLOBEM dataset. This technology unfolds a panorama where
users and researchers can peek into the intricate world of sleep
patterns, enabling them to draw profound insights and correlate
sleep with various lifestyle aspects. The ultimate goal is to foster
better-informed decisions about sleep health and overall wellness.
Nonetheless, our journey through technology isn’t without hurdles.
Ensuring the advice and insights offered by our system remain accu-
rate and dependable is pivotal to upholding our initiative’s integrity
and genuinely supporting health-related decision-making.

Addressing the aforementioned challenges is critical, and to do
so, we stand firmly on two pillars: Ensuring Data Security and
Maintaining Model Accuracy. Implementing and routinely audit-
ing strong data security measures guard against potential data
manipulation and upholding the reliability of our insights. Rather
than implementing a live checking system, our approach involves
employing more accurate predictive models when they become
available, ensuring our technology remains state-of-the-art and
offers the most reliable and accurate insights possible. Thus, we
propel our initiative forward, prioritizing a solid, ethical foundation
in all our technological and research endeavours. 0
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