
CS#112#Programming#II###Lab$1:$Objects$&$Classes$

#

CS#112#Programing#II#
Lab#Session#1:#Objects#and#Classes#(Part#1)#
#

Objectives$

The objective of today’s lab session is to get you started using the concept of object-oriented
programming to address larger scale software development. By the end of this lab you should
develop better understanding of how to: #

•! define classes and create objects using different constructors.
•! use UML graphical notations to describe classes and objects.
•! access an object’s data and methods using the object member access operator.

Exercise$1$$(30$minutes)$

Given the code below (attached as softcopy with this sheet), do the following:

 1. Does this code compile and run?
 2. If so, what is the output?
 3. Provide comments explaining each line of code and summarize the general aim of the code.
 4. Use UML graphical notations to describe the Rectangle class as well as the two created objects, i.e., rec1
and rec2.

*********************!!RectangleDemo.java!*********************!!!

Please note that for simplicity the rectangle class as well as the main class (which is used for testing the
rectangle class) are both written in the same file. This is, however, not the case in real-world applications.

CS#112#Programming#II###Lab$1:$Objects$&$Classes$

Exercise$2$$(45$minutes)$

The Account Class

Design a class named Account that contains:

a.! A private int data field named id for the account (default 0)
b.! A private double data field named balance for the account (default 0)
c.! A private Date data field named dateCreated that stores the date when the account was created
d.! A no-arg constructor that creates a default account
e.! A constructor that creates an account with the specified id and initial balance
f.! The accessor and mutator methods for id and balance.
g.! The accessor method for dateCreated
h.! A method named withdraw() that withdraws a specified amount from the account
i.! A method named deposit() that deposits a specified amount to the account

•! Draw the UML diagram for the Account class
•! Implement the Account class
•! Use the test program given bellow that creates an Account object with an account ID of 1122, and

a balance of $20,000. Use the withdraw() method to withdraw $2,500, use the deposit() method to
deposit $3,000, and print the balance, and the date when this account was created.

Hint: The Date class is included in the util package.

Use two separate files to implement the Account class and the Test class.

public!class!Test!{!
!!public!static!void!main!(String[]!args)!{!
!!!!Account!account!=!new!Account(1122,!20000);!
!!!!!
!!!!account.withdraw(2500);!
!!!!account.deposit(3000);!
!!!!System.out.println("Balance!is!"!+!account.getBalance());!
!!!!System.out.println("This!account!was!created!at!"!+!
!!!!!!account.getDateCreated());!
!!}!
}!
!
!
Class!Account!{!
!
!!//!Implement!the!class!here!
!
}!

