
 Software Engineering Workshop

 Workshop 4

 Modeling a System's Logical Structure:
 Class Diagrams

Slides prepared by Marwah Alaofi

Quick Review

What’s the UML?

Why do we have many diagrams?

Why do we use use case diagrams?

In today’s workshop you’ll ..

Understand the purpose and function of the class
diagrams

Learn how to model the class compartments

Learn how to model the class attributes

Learn how to model the class operations

Objects and Classes

 An object is any person, place, thing, concept, event, screen, or
report applicable to your system.

 Objects have attributes and they have methods.

A class is a representation of an object and, in many ways, it is
simply a template from which objects are created.

Classes form the main building blocks of an object-
oriented application.

Example:

Although thousands of students attend the university, you would
only model one class called Student.

Students have student numbers, names, addresses, and phone
numbers. Those are all examples of the attributes of a student.
Students also enroll in courses, drop courses, and request
transcripts which represent what the student can do (methods).

Objects and Classes (Cont.)

Class Diagrams
A system's structure is made up of a collection of pieces often

referred to as objects.

Classes describe the different types of objects that your system
can have.

A class diagram describes the types of objects (i.e., classes) in
the system and the various kinds of static relationships that exist
among them.

 Class diagrams also show the properties and operations of a
class and the constraints that apply to the way objects are
connected.

Class Diagrams (Cont.)

 Class diagrams are the primary source for forward
engineering (turning a model into code), and the target for
reverse engineering (turning code into a model).

The rules in the Class diagram are used to generate code.

 The code generates objects, while the application is running,
that behave according to the rules defined by the Class diagram.

An Overview of the Graphical
Notations

8

Use case

Class

Relationships

ClassClasses

Modeling a Class
 Classes form the foundation of the Class

diagram.

 a class in UML is drawn as a rectangle
split into up to three compartments
(sections):

The top section contains the name of the
class.

 The middle section contains the attributes.

 The final section contains the operations.

Modeling a Class (Cont.)

The attributes and operations sections are optional.

Hiding them does not change the fact that they exist.

It merely enables you to keep the people who are reviewing
your Class diagram focused on the elements about which you
need their insights

Modeling a Class (Cont.)

Modeling a Class–Example

 The BlogAccount class defines the information that the
system will hold relating to each of the user's accounts.

 The BlogEntry class defines the information contained
within an entry made by a user into her blog.

Modeling the Name
Compartment–Class Name

The name always resides in the topmost compartment.

The name is nearly always a singular noun or noun phrase
such as User and BlogAccount.

The capitalization rules for a class name typically correspond
to the language that will be used to code the application.

Since the code generated from class names usually does not
support spaces in the name, it is a good idea to use
underscores or hyphens or simply no spaces between the
words.

A class name must be unique within a package.

 The same class name may occur in multiple packages.

This redundancy often happens when systems are worked
on by different teams or developed as parts of different
projects.

 To clarify which class you mean to reference you must
qualify the class name with the name of the package that owns
it.

Modeling the Name
Compartment–Class Name (Cont.)

 The format for a fully qualified class name is:

Package_Name :: Class_Name

Modeling the Name
Compartment–Class Name (Cont.)

Visibility
How does a class selectively reveal its operations and data to
other classes? By using visibility.

There are four different types of visibility that can be applied to
the elements of a UML model.

These visibility characteristics will be used to control access to
both attributes, operations, and sometimes even classes

Public Visibility
Public visibility is the most accessible of visibility characteristics.

Specified using the plus (+) symbol before the associated attribute or operation.

Protected Visibility
Protected elements on classes can be accessed by methods that are part of your
class and also by methods that are declared on any class that inherits from
your class.

Protected attributes and
operations are specified
using the hash (#).

"This attribute or operation is
useful inside my class and
classes extending my class, but
no one else should be using it."

Package Visibility
If you add an attribute or operation that is declared with package visibility to
your class, then any class in the same package can directly access that attribute
or operation.

Specified with a tilde (~)

Private Visibility
Only the class that contains the private element can see or work
with the data stored in a private attribute or make a call to a private
operation.

Specified with a minus (-)

Private Visibility
It's a commonly accepted rule of thumb that attributes should
always be private and only in extreme cases opened to direct
access by using something more visible.

 The exception to this rule is when you need to share your
class's attribute with classes that inherit from your class.

 In this case, it is common to use protected.

In well-designed OO systems, attributes are usually private or
protected, but very rarely public.

Modeling the Attributes
Attributes can be
represented on a class
diagram either by
placing them inside
their section of the
class box—known as
inline attributes —or
by association with
another class.

The attribute notation describes a property as a line of text
(signature) within the class box itself. The full form of an
attribute is:

visibility name: type multiplicity = default {property strings}

Your attribute will usually have a signature that contains a visibility
property, a name, and a type, although the attribute's name is the only
part of its signature that absolutely must be present.

Modeling the Attributes
(cont.)

An attribute's name can be any set of characters, but no two
attributes in the same class can have the same name.

One of the primary aims of modeling your system is to
communicate your design to others so make sure that the name
accurately describes what is being named.

Check to make sure that the name meets the conventions of the
programming language.

Attribute Name

The type of attribute can vary depending on how the class will
be implemented in your system but it is usually either a class,
such as String, or a primitive type, such as an int in Java.

Attribute Type

Multiplicity

Sometimes an attribute will represent more than one object.

 In fact, an attribute could represent any number of objects of
its type.

This is like declaring that an attribute is an array.

Multiplicity allows you to specify that an attribute actually
represents a collection of objects, and it can be applied to both
inline and attributes by association.

Multiplicity (Cont.)

Multiplicity is modeled as a value expression.

When multiplicity is used in an inline attribute, the value
expression is enclosed within square brackets ([]).

When multiplicity is used to adorn a diagram notation like an
association, it has no enclosing brackets.

Multiplicity can express a range of values, a specific value, a
range without limit.

Multiplicity (Cont.)
Range of values

A range of values includes a lower and an upper value separated by two periods, as in
[0..5] or 0..5.

Specific values

When the upper and lower values in a range are the same, the UML allows the use of
the upper value by itself, as in [2] or 2

Range without limit

When the upper value is unknown or
unspecified, the UML uses the asterisk (*) in
place of a number value, as in [1..*], which
means one or more.

Attribute Properties
There is also a set of properties that can be applied to attributes to
completely describe an attribute's characteristics.

Examples of properties

-readOnly: Specifies that the attribute may not be modified once the
initial value is set.

-ordered: An attribute with a multiplicity greater than 1 can be
specified to be ordered.

-unique: an attribute with multiplicity greater than 1 may be
required to be unique.

Attribute Properties–Example

Modeling Operations
Operations are the actions that a class knows to carry out.

Operations most obviously correspond to the methods on a class.

The full UML syntax for operations is:

visibility name (parameter-list) : return-type {property-string}

Operations in UML are specified on a class diagram with a
signature that is at minimum made up of a visibility property, a
name, a pair of parentheses in which any parameters that are
needed for the operation to do its job can be supplied, and a return
type.

Modeling Operations–Example

Static Parts of the Class

In UML, operations, attributes, and even classes themselves
can be declared static.

You represent static parts by underlining them.

References

•Fowler, M. (2004). UML distilled: a brief guide to the standard
object modeling language. Addison-Wesley Professional.

•Miles, R and Hamilton, K. (2006) Learning UML 2.0.
Sebastopol: O'Reilly Media, Inc.

•Pender, T (2003). UML Bible. John Wiley & Sons, Inc., New
York, NY.

•Pilone, D., & Pitman, N. (2006). UML 2.0 in a nutshell. O’Reilly.

