
 Software Engineering Workshop

 Workshop 6

 Modeling Ordered Interactions:
 Sequence Diagrams

Slides prepared by Marwah Alaofi

Announcement

Sequence diagram as well as the documentation
are due next week.

Every two/three students would create one
sequence diagram.

Something is Missing!
Use cases allow your model to describe what your system must
be able to do.

 Classes allow your model to describe the different types of
parts that make up your system's structure.

 There's one large piece that's missing; with use cases and
classes alone, you can't yet model how your system is actually
going to do its job.

This is where interaction diagrams, and specifically sequence
diagrams, come into play.

In today’s workshop you will
learn ..

What is sequence diagrams

Where to use sequence diagrams

Graphical notations: participants, messages,
lifelines and activation bars.

Sequence Diagrams

Sequence diagrams are all about capturing the order of
interactions between parts of your system.

Using a sequence diagram, you can describe which interactions
will be triggered when a particular use case is executed and in
what order those interactions will occur.

Typically, a sequence diagram captures the behavior of a single
scenario. It shows a number of example objects and the messages
that are passed between these objects within the use case.

When to Use Sequence Diagrams

When you want to look at the behavior of several objects within
a single use case.

 Sequence diagrams are good at showing collaborations among
the objects.

If you want to look at the behavior of a single object across many
use cases, use a state diagram.

If you want to look at behavior across many use cases or many
threads, consider an activity diagram.

How it looks like!

1. Participants in a Sequence
Diagram

1.1 Participant Names

9

Participants on a sequence diagram can be named in number of
different ways, picking elements from the standard format:

The elements of the format that you pick to use for a particular
participant will depend on the information known about a
participant at a given time, as explained

10

2. Time in Sequence Diagrams

2. Time in Sequence Diagrams
(Cont.)

A sequence diagram describes the order in which the interactions
take place, so time is an important factor.

Time on a sequence diagram starts at the top of the page, just
beneath the topmost participant heading, and then progresses down
the page.

The order that interactions are placed down the page on a sequence
diagram indicates the order in which those interactions will take
place in time.

Time on a sequence diagram is all about ordering, not duration.

3. Messages in Sequence
Diagrams

An interaction in a sequence diagram occurs when one participant
decides to send a message to another participant.

3. Messages in Sequence
Diagrams (Cont.)

Messages on a sequence diagram are specified using an arrow from
the participant that wants to pass the message, the Message Caller,
to the participant that is to receive the message, the Message
Receiver.

Messages can flow in whatever direction makes sense for the
required interaction—from left to right, right to left, or even back to
the Message Caller itself.

Think of a message as an event that is passed from a Message Caller
to get the Message Receiver to do something

Message Signatures

A message arrow comes with a description, or signature. The format
for a message signature is:

You can specify any number of different arguments on a message,
each separated using a comma. The format of an argument is:

Message Signature –
Examples

doSomething()

doSomething(number1 : Number, number2 :
Number)

doSomething() : ReturnClass

myVar = doSomething() : ReturnClass

Activation Bars

Activation Bars (Cont.)

When a message is passed to a participant it triggers, or invokes, the
receiving participant into doing something; at this point, the
receiving participant is said to be active. To show that a participant
is active, i.e., doing something, you can use an activation bar.

An activation bar can also be shown on the sending end. It indicates
that the sending participant is busy while it sends the message.

Activation bars are optional—they can clutter up a diagram.

Nested Messages
When a message from one participant results in one or more
messages being sent by the receiving participant, those resulting
messages are said to be nested within the triggering message

Message Arrows

The type of arrowhead that is on a message is also important when
understanding what type of message is being passed.

For example, the Message Caller may want to wait for a message to
return before carrying on with its work—a synchronous message.

Or it may wish to just send the message to the Message Receiver
without waiting for any return as a form of "fire and forget" message
—an asynchronous message.

Sequence diagrams need to show these different types of message
using various message arrows.

Message Arrows (Cont.)

Synchronous Messages
A synchronous message is invoked when the Message Caller waits
for the Message Receiver to return from the message invocation

public class MessageReceiver
{
 public void foo()
 {
 // Do something inside foo.
 }
}

public class MessageCaller
{
 private MessageReceiver messageReceiver;

 // Other Methods and Attributes of the class are declared here

 // The messageRecevier attribute is initialized elsewhere in
 // the class.

 public doSomething(String[] args)
 {
 // The MessageCaller invokes the foo() method

 this.messageReceiver.foo(); // then waits for the method to return

 // before carrying on here with the rest of its work
 }
}

Asynchronous Messages

An asynchronous message is invoked by a Message Caller on a
Message Receiver, but the Message Caller does not wait for the
message invocation to return before carrying on with the rest of the
interaction's steps.

This means that the Message Caller will invoke a message on the
Message Receiver and the Message Caller will be busy invoking
further messages before the original message returns.

Asynchronous Messages–
Example

If you are designing a piece of software with a user interface that
supports the editing and printing of a set of documents. Your
application offers a button for the user to print a document.

Printing could take some time, so you want to show that after the
print button is pressed and the document is printing, the user can go
ahead and work with other things in the application. Here you need
a new type of message arrow: the asynchronous message arrow.

The Return Message

The return message is an optional piece of notation that you can
use at the end of an activation bar to show that the control flow
of the activation returns to the participant that passed the
original message.

In code, a return arrow is similar to reaching the end of a
method or explicitly calling a return statement.

You don't have to use return messages —sometimes they can
really make your sequence diagram too busy and confusing.

Participant Creation and
Destruction Messages

Participants do not necessarily live for the entire duration of a
sequence diagram's interaction. Participants can be created and
destroyed according to the messages that are being passed

You don't have to use return messages —sometimes they can really
make your sequence diagram too busy and confusing.

You don't have to clutter up your sequence diagrams with a return
arrow for every activation bar since there is an implied return arrow
on any activation bars that are invoked using a synchronous
message.

Participant Creation and
Destruction Messages

Participant Creation and
Destruction Messages (Cont.)
public class MessageReceiver {
 // Attributes and Methods of the MessageReceiver class
}

public class MessageCaller {

 // Other Methods and Attributes of the class are declared here

 public void doSomething() {
 // The MessageReceiver object is created
 MessageReceiver messageReceiver = new MessageReceiver();
 }
}

With some implementation languages, such as Java, you will not
have an explicit destroy method so it doesn't make sense to show
one on your sequence diagrams.

It is all handled implicitly by the Java garbage collector.

In these cases, where another factor such as the garbage collector is
involved, you can either leave the object as alive but unused or
imply that it is no longer needed by using the destruction cross
without an associated destroy method.

Participant Creation and
Destruction Messages (Cont.)

Participant Creation and
Destruction Messages (Cont.)

Example

Bringing a Use Case to
Life with a Sequence

Diagram

The Scenario

 1 The Administrator asks the system to create a new blog account.

 2 The Administrator selects the regular blog account type.

 3 The Administrator enters the author's details.

 4 The author's details are checked using the Author Credentials
Database.

 5 The new regular blog account is created.

 6 A summary of the new blog account's details are emailed to the
author.

References

•Fowler, M. (2004). UML distilled: a brief guide to the standard
object modeling language. Addison-Wesley Professional.

•Miles, R and Hamilton, K. (2006) Learning UML 2.0.
Sebastopol: O'Reilly Media, Inc.

•Pender, T (2003). UML Bible. John Wiley & Sons, Inc., New
York, NY.

•Pilone, D., & Pitman, N. (2006). UML 2.0 in a nutshell. O’Reilly.

