e QRCIEN A

Workshop 6

Modeling Ordered Interactions:
Sequence Diagrams

Slides prepared by Marwah Alaofi

R T &Y L
R e, B e

- Announcement '

| 9 Sequence diagram as well as the documentation
~are due next week.
Every two/ three students would create one

~ sequence diagram.

‘Something is Missin !~ L

% Use cases allow your model to descr1be What your system must
be able to do '

_% Classes allow your model to descr1be the different types of

parts that make up your system s structure.

H ‘There's one large piece that's missing; with use cases and
- Classes alone, you can't yet model how yolu system is actually

. gomg to do 1ts]ob

’~ *% Th1s is Where mteract1on d1agrams and spec1f1cally iy

d1agrams Come mto play

I to d ay s Workshop YO u wi
\ le ar’ 1

! % Whatis sequence diagrams
‘ WWher‘e to use sequence diagrams

= 4%/ Graph1ca1 notat1ons part1c1pants messages,

11fe11nes and actlvatlon bars.

& - Sequence diagrams are all about capturing the order of

interactions between par‘ts of your system.

* Usmg a sequence diagram, you can descr1be which mteractlons
W111 be tr1ggered when a partlcular use case is executed and in

= What order those mteractlons will occur.

- B » Typi’call'y, a sequence diagram captures the behavior of a single
~ scenario. It shows a number of example objects and the messages |

that are passed between these objects within the use case.

‘When to Use Sequence Diagrams

- When youwant to look at the behavior of severatobjects within

a single use case. =

Sequence diagtatns are good at showing collaborations among
| thé_objefc:ts. '

» If you want to look at the behavior of a single object across many

- use cases, use a state diagram.

If you want to look at behav1or across many use cases or many

 threads, conswler an act1v1ty dlagram

How/it looks like!

' <<actor>> , <<actor>> <<actor>> |
| admin : Administrator : ContentManagementSystem acd : AuthorCredentialsDB | | es:EmailSystem |

createNewBlogAccount

selectBlogAccountType(type)

enterAuthorDetails(author : AuthorDetails) —
che(kAuthorDetauls(author AuthorDetails)

createNewReqularBlogAccount (author AuthorDetails) .D

[

emailBlogDetails (reqularBlogAccount)

sendEmail(email ; Email)

=

1. Part1c1pants In a Sequence
D1a ram

participant1 : ParticipantClass participant2 : ParticipantClass2

/ \ ,/
\

N
participants

a

Participant name and
corresponding Class

Ceessssscsep .-

1.1 Participant Names

% Participants on a sequence diagram can be named in number of

 different ways, picking elements from the standard format:

name [selector] : class name ref decomposition

| o The elements of the format that you pick to use for a particular

Pa-rti_'(‘;ipant Wﬂl depend on theinformation known abouta

- participant at a given time, as explained

: Content-
Manage-

mentSystem

admin : Ad-

ministrator

even-
tHandlers
[2] : Even-

. tHandler

A part is named admin, but at this point in time the part has not been as-
signed a class.

The class of the participant is ContentManagementSystem, but the part

currently does not have its own name.

There is a part that has a name of admin and is of the class Adminis-

trator.

There is a part that is accessed within an array at element 2, and it is of

the class EventHandler.

T TN PR DRk o s e At s d_h Sy

:vb,.i' , . < l : ‘.~ ¥ :‘..-.; > - o = 5 < ‘4 .1 455

e 3 A SO Tt g I 0 = s c e LA R Ay

Ty v e - 3 . - > X

: 47 - < e . e B » 2 a 72
b Q e
ot ‘. _T X Ky

(":_ . . i t)

| ', % A sequence dlagram describes the order in wh1ch the interactions

take place, so time is an important factor.

- Time on a sequence diagram starts at the top of the page, just
= _-beneath the topmost participant headmg, and then progresses down

= _the page

: The order that interactions are placed down the page on a sequence
dlagram indicates the order in which those interactions will take

| place in time.

» Time on a sequence diagram is all about ordering, not duration.

EQ0 N esS ageS in Sequence
D1a oTams

, % An 1nteract1on 1n a sequence dlagram occurs when one part1c1pant

dec1des to Send a message to another part1c1pant

pamapantl Pamapant(Iass w

s message(arguments) The Message L
| Ihe(Mfésage\ = - m
= aller

." Message Receiver
s Activation Bar
' (optional)

The Message

The Message Signature

o | Message Caller
| Activation Bar
(optional)

Return Arrow
(optional)

3. Messa g es in Se qu e nC e{ W
'Dlarams (Cont) .

o Messages on a sequence d1agram are spec1ﬁed usmg an arrow from
the part1c1pant that wants to pass the message, the Message Caller,
to the part1c1pant that is to receive the message, the Message

Rece1ver

, Messages can flow in Whatever direction makes sense for the
~ required mteractlon—from left to right, right to left, or even back to
the Message Caller itself.

‘, Thmk of a message as an event that is passed from a Message Caller _ &

| Wioito get the Message Recelver to do somethmg

Messa ge Signatures .

% Amessage arrow Comes Wlth a descr1pt10n or srgnature. The format

for a message s1gnature is:

attribute = signal or message name (arguments) : return type

% You Can spec1fy any number of drfferent arguments on a message,

each separated usmg a comma. The format of an argument is:

<pname>:<class>

e ey e A N

e s . 2 : T e o e AR I e 4 S T A e R S e e
:J ,,;_;_..,’. WAt s ot VR 5 ;_'»: = T e "_:'?’:‘!:; e Y = Vo iy AR Y 0 ';_‘_47 X
S x 2 . 3 - .'.:";-.':",-_- :_..:s.‘.:.' 4‘;' ~ ks _','_‘:{‘,:":" 2 3 ;,,_‘.. T e \.-._.;1\‘\'
e é Y . 7 ; R ALs :
Thy v n - > - - 2, LR RN =T {
o :'f.'v - ¥ (4 - n 3 . A, X r
h _ . Ry A3\ >

% doSomethmg()

. %f doSomethmg(numberl Number number?2 :
Number) '

. %doSomething() RetUrnClass

%myVarZ ‘ dos omething() : ReturnClass

participant1 : Participant(Class participant2 : ParticipantClass

message(arguments)

Message Receiver |
ActivationBar |

+ N\
| Message Caller
| Activation Bar

~Activation Bars (Cont.)

% Whena message 1S passed toa part1c1pant 1t trlggers or invokes, the
recelvmg part1c1pant into doing somethmg, at this point, the
receiving participant is said to be active. To show that a participant

| -'is'active, i.e., doing something, you can use an activation bar.

» *% An activation bar can also be shown on the sending end. It indicates

' that the sending participant is busy while it sends the message

4%/ Activation bars_are optional—they can clutter up a diagram.

Reoted MeSSageS

% When a message from one part1c1pant results 1n one or more -
- messages bemg sent by the rece1v1ng part1c1pant those resultmg

» messages are sa1d to be nested W1th1n the tr1gger1ng message

Initial Message
(aller

-’
L
L
L
L
L

participant1 : ParticipantClass I | participant2 I | participant3

L
' '
'

initialMessage(arguments) > ' nestedMessage1(arguments) .

ME

tos Messages nested
The Initial inside

Message Initial Message

- The type of arrowhead that is on a message is also important when

understanding what type of message is being passed.

- For example the Message Caller may want to wait for a message to

~ return before carrying on with 1ts work—a synchronous message.

9 Or it may wish to just send the message to the Message Receiver
w1thout waiting for any return as a form of "fire and forget message

—an asynchronous message.

Sequence d1agrams need to show these different types of message

- using Var1ous message arrows.

Message Arrows (Cont.)

A Synchronous Message

- AnAsynchronous Message

<. A Return Message

<<(reate>> > | p1:Class| AParticipant Creation Message

MY»_,X A Participant Destruction Message

N

' Synchronous Messages

% A synchronous message is mvoked when the Message Caller Walts =

for the Message Recelver to retum from the message mvocatlon .

| messageCaller : Message(aller messageReceiver : MessageReceiver

public class MessageReceiver

{
public void foo()

{

// Do something inside foo.

}
}

public class MessageCaller

{
private MessageReceiver messageReceiver;

/| Other Methods and Attributes of the class are declared here

/| The messageRecevier attribute is initialized elsewhere in
/] the class.

public doSomething(String[] args)

{
/| The MessageCaller invokes the foo() method

this.messageReceiver.foo(); // then waits for the method to return

/| before carrying on here with the rest of its work

i
}

Asynchronous Messages

An asynchronous message is invoked by a Message Caller on a
Message Receiver, but the Message Caller does not wait for the
= message invocation to return before carrying on with the rest of the

mteractlon < steps

. % This means that the Message Caller will invoke a message on the
Message Rece1ver and the Message Caller will be busy 1r1v0k1ng

further messages before the 0r1g1na1 message returns.

e

e s ‘ t B e = S . L A
s .;\;-3.:;‘; l "," Pgxs PR : ? = ‘!:’.'. e |
s i T 2 " " :
e B A R s e L
. - = : . - 3
Thy v in - - - [
18 - - - : g -
. S | B A 5 &E G :
R o e B ."-. . >
S : .: : e
= ANEED P g e
: A S e SRl :

-4 If you are designing a piece of software with a user interface that
supports the editing and printing of a set of documents. Your

E application offers a button for the user to print a document.

- Printing coiﬂd take some time, so you want to show that after the
print button is pressed and the document is printing, the user can go
| ahead and work with other things in the application. Here you need

‘a new type of message arrow: the asynchronous message arrow.

& % The return message is an optional piece of notation that you can
use at the end of an activation bar to show that the control flow
of the actlvatlon returns to the part1c1pant that passed the

| or1g1na1 message.

4 In code, a return arrow is similar to reaching the end of a

| method or explicitly Calling a return statement.

% You don t have to use return messages —sometimes they can

really make your sequence dlagram too busy and confusmg

Participant Creation anc e
-"D estru Ct1on Messa ves

- Participants do not necessarily live for the entire duration of a
sequence diagram's interaction. Participants can be created and

destroyed according to the messages that are being passed

- You don't have to use return messages —sometimes they can really

= make your sequence diagram too busy and confusing.

' You don t have to clutter up your sequence diagrams with a return
| arrow for every activation bar since there is an implied return arrow
on any activation bars that are invoked using a synchronous

~ message.

Participant Creation and
Destruction Messages

notation

create(arguments) : 7
’, o

| participant1 : ParticipantClass1 I | participant2 : Participant(lass2 I ggﬁ;‘,’;‘;ﬂfﬁﬂl

= (reating two - <<destroy>> ;
| participants ' - >><

<<destroy>>

'
'
P
' ,'
Destroying two
participants

Participant Creationand
.Destruct1on Messa : es (Ccnt)

& public class MessageReceiVer { |
// Attributes and Methods of the MessageReceiver class

}
.pUbli¢'clésS*MessageCaller {
o //;Other Methods and Attributes of the class are declared here
S public void doSomething() { |
- // The MessageReceiver object is created

~ MessageReceiver messageReceiver = new MessageReceiver();.'

R

a r tl c 1P ant C rea tio Il aIl\“”‘\'_ ik
Destructmn Messa res (Cont)

- With some implementation languages, such as Java, you will not
have an explicit destroy method so it doesn't make sense to show
~one on your sequence diagrams.
Iti_s_ ;au .handled implicitly bythe]"ava garbage collector.
- In these cases, where another factor such as the garbage collector is
41nvolved you can either leave the object as alive but unused or

.1mply that it is no longer needed by using the destruction cross

Wlthout an assoc1ated destroy method

5"art1c1pant Creation and Gl
Destruct1on Messa es (Cont)

participant : Participant

Bringing a Use Case to
Life with a Sequence
- Diagram

Example

Administrator

Content Management System

Record
ApPIication Check Identity
ailure

: 7

\
/.
<<extend>> \ ; <<include>>

Create anew
Blog Account

(reate a new (reate a new

Regular Blog Account Editorial Blog
Account

Author
Credentials
Database

el

1 The AdministratOr asks the system to create_-a*new-*blog account.

2

The Administrator selects the regular blog account type.

3 The Administrator enters the author's de'tails»..’ |

The author's details are checked using the Author Credentials
Database.

‘The new regular blog account is created.

A summary of the new blog account's details are emailed to the
author.

' <<actor>> , <<actor>> | <<actor>> | |
admin : Administrator : ContentManagementSystem acd : AuthorCredentialsDB | | es: EmailSystem |

createNewBlogAccount

selectBlogAccountType(type) .I:]

enterAuthorDetails(author : AuthorDetails) —
checkAuthorDetails(author Author!)etails)

createNewRegularBlogAccount (author : AuthorDetails) E

emailBlogDetails (reqularBlogAccount)

sendEmail(email : Email)

<<actor>> ui: controller : <<actor>> <<actor>>
admin : Administrator AccountCreationU| CreateNewAccountController | |acd : AuthorCredentialsDB | | es : EmailSystem

R——

createNewBlogAccount()

selectBlogAccountType(type)

enterAuthorDetails (author AuthorDetails)

clickSubmit() createNewReqularBlogAccount(author : AuthorDetails)

checkAuthorDetalls(author AuthorDetalls)

checkNewReqgularBlogAccount (author AuthorDetalls)

-

emailBlogDetails (reqularBlogAccount)

sendEmail(email : Email)
T

FEE, g P e d = : . A s e X ™ 4 LS - . $ - ¢
T RS] S S P = P Al - A T e : Sopes LS i n
N [SSIEY S W Toh EACKEaE At e I3 T ¢ 5 ; . ;
St g R St L SN . NS e 1=re T -
oy p) . ot ’< . . Rl : - e “ . A b
" oy s L : RO is el . A . ; :
r s - < - ! - - = 3
e R Sl ¢ SR D= e <y R 3 N 53 s -
= . oy = J = ” : 2 i R deies
: s et 3 !
- R s 2 34 N - \ &
. e > - : ’
: i P D - = e = 23 y
- v = K "3 : - : 3
7
L4
<
¢ z.
.

eFowler, M. (2004). UML distilled: a brief guide to the standard

object modeling language. Addison-Wesley Professional.

~ eMiles, R and Hamilton, K. (2006) Learning UML 2.0.
- Seba‘sto‘pok O'Reilly Media, Inc.

B oPender T (2003) UML B1ble John Wiley & Sons, Inc New
York NY ’ '

| QPilone', D, & Pitman; N. (2006). UML 2.-0._ina nutshell. O'Reilly.

