
Software Engineering Workshop

Workshop 2

Working with Requirements:
Use Case Diagrams

Slides prepared by Marwah Alaofi

-

Anyone isn’t assigned to a group?

Have not contacted your supervisors?!

Quick Review

What’s the UML?

Why do we need it?

Why do we have many diagrams?

"The hardest single part of
building a software system is
deciding what to build. No other
part of the work so cripples the
resulting system if done wrong.
No other part is more difficult to
rectify later." Frederick Brooks
says.

 http://www.seas.harvard.edu/news-events/publications/
qa/fred-brooks-jr

http://www.seas.harvard.edu/news-events/publications/qa/fred-brooks-jr

“Get your team up to speed on these requirements so that
you can all start designing the system.”

What’s next?!

How do you take this huge set of loosely
defined requirements and distill it into a
format for your designers without losing
important detail?

Use cases are an excellent starting point!

In today’s workshop you’ll
learn..

The role of the use case diagram and where to use it
in the software development process.

Different graphical notations used with use case
diagram.

The usefulness of use case diagrams.

Use Case Diagram
 Provides a complete, black-box, outside-in view of system

functionality.

 Shows all users of the IT system and all tasks that users can
perform with the system.

 Usually applied during requirements activities to capture
functional requirements. Nonfunctional requirement?!

Should be the first serious output from your model after a
project is started. How could you begin to design a system if you
don’t know what it will be required to do?!

Use Case Diagram (Cont.)

Describes the system functionality.

Describes what actors that interact with the system.

Describes any associations between use cases, actors, use
cases and actors.

Answers the question of “What does the system/
software do? And who/what interacts with it?”

Online Store:
Requirement: The online store shall
allow customers to buy products.

The graphical notations of the
use case diagram

10

System
Boundary

Use case

Association
Actor

1. Use cases

- A use case is a functional requirement
that is described from the perspective
of the users.

- It is shown as an ellipse labeled
with the name of the use case.

- Always named with the goal of the actor.

Use case name

1. Use cases (Cont.)

Each use case is composed of one or more behavior
sequence/scenario.

A scenario is a sequence of steps describing an
interaction between a user and a system.

Example: “Buy a Product”
use case

1. Customer browses catalog and selects items to buy.

2. Customer goes to check out.

3. Customer fills in shipping information

4. System presents full pricing information including
shipping

5. Customer fills in credit card information.

6. System authorizes purchase

7. System confirms sale immediately

8. System sends confirming e-mail to customer.

Buy a Product

Other scenarios for “Buy a
Product”

The credit card authorization might fail, and
this would be a separate scenario.

In another case, you may have a regular
customer for whom you don’t need to capture
the shipping and credit card information, and
this is a third scenario.

What makes a good use case

A rule of thumb!

- A use case is something that provides some
measurable result to the user or an external system.

- Don't define each step in a use case as a use case!
e.g. “fills in shipping information” is NOT a good
use case.

 Natural language is used.

2. Outside your system: Actors

Actor name

Actors are entities which require help from
the system to perform their task or are
needed to execute the system’s functions.

Interact with the system but not part of it!

An actor is drawn in UML using either a
“stick man”or a stereotyped box and labeled
with an appropriate name (abstract name).

2. Outside your system: Actors
(Cont.)

A use case is started by an actor.

The actor is the source of the

incoming event that is the first

 line in the use case.

This actor is the primary

 or active actor.

Answer the question of “who and what interacts with the
system?”

It might be a person, a system, or some external entity. Like?

Linked to one or more system use cases.

It is always outside the system being modeled.

2. Outside your system: Actors
(Cont.)

Do you think
that time could

be an actor?

3. Associations(Relationships)

There are several types of relationships that may appear
on a use case diagram:

1. An association between an actor and a use case.
2.An association between two use cases.
3.A generalization between two actors.
4.A generalization between two use cases.

Actor - use case relationship

• The association between the
actor and a use case indicates
that the actor uses the use
case.

• The direction of the arrow is
determined based on the type
of the actor.

Active and Passive Actors

- An active actor is one that starts a use case by
supplying the interaction across the system
boundary that starts the use case.

- A passive actor interacts with the system as
part of the use case but does not start it.

Example

Use a directed association from an active actor to a use case
and a directed association from a use case to a passive actor.

Active Passive

4. System Boundary (Optional)

A rectangle surrounding use cases.

Anything outside your system should be
outside the system boundary.

It’s good practice to name your box with the
name of your system being developed.

How much it helps!
Both time and money are saved!

- Use cases are a means to bring gaps and the lack of
understanding in the user’s requirements to the forefront at the
beginning of a project.

It can help manage a project’s workload

- Once priority and risk are assigned to a use case!

Serves as basis for testing

- What better way to test your system than by using the use cases that
originally captured what the user wanted in the first place?

5 minute BREAK !!

Example: University Record System

 System Description

A university record system should keep information about its
students and academic staff.

 Records for all university members are to include their
id number, given name, email, address, date of birth, and
telephone number.
Students will also have a list of subjects they are enrolled in.
 A student cannot be enrolled in any more than 10 subjects.
 Academic employees will have a salary, and a list of subjects
they teach. An academic can teach no more than 3 subjects.

Example: University Record System

The system should be able to handle the following commands:

1. Administrators can add and remove university members
(students, and academic staff).
2. Administrators can add and delete subjects.
3. Students can enroll and un-enroll in subjects.

References

• Alhir, S. (2003) Learning UML. Sebastopol: O'Reilly Media, Inc.

•Fowler, M. (2004). UML distilled: a brief guide to the standard
object modeling language. Addison-Wesley Professional.

•Miles, R and Hamilton, K. (2006) Learning UML 2.0.
Sebastopol: O'Reilly Media, Inc.

•UML Training Course from CRaG System,
http://www.cragsystems.co.uk.

http://www.cragsystems.co.uk

