
Software Engineering Workshop

Workshop 3

Working with Requirements:
Use Case Diagrams (Part 2)

Slides prepared by Marwah Alaofi

Quick Review

What purpose does the use case diagram serve?

What graphical notations it involves?

How useful it could be in the software
development?

In today’s workshop you’ll
learn..

The <<include>> relationship

The generalization relationship between use cases
and between actors

The <<extend>> relationship

Use Case Relationships

When looking at your use case scenarios, you will notice that
there is some similarity between steps in different use cases.

You may also find that some use cases work in several different
modes or special cases.

You may also find a use case with multiple flows/scenarios
throughout its execution, and it would be good to show those
important optional cases on your use case diagrams

Wouldn't it be great if you could get rid of the repetition
between use case descriptions and show important
optional flows.

You can show reusable, optional, and even specialized
use case behavior between use cases.

Use Case Relationships
(Cont.)

Weblog Content Management
System

Suppose we're defining requirements for a weblog
content management system (CMS).

Weblogs, commonly referred to as blogs, originally started out as privately
maintained web pages for authors to write about anything. These days, blogs
are usually packaged into an overall CMS. Bloggers submit new entries to the
system, administrators allocate blogging accounts, and the systems typically
incorporate advanced features, such as RSS feeds. A well-publicized blog can
attract thousands of readers (see O'Reilly's blogging site at http://
weblogs.oreillynet.com).

http://weblogs.oreillynet.com/

REQUIREMENT A.1

The content management system shall allow an administrator
to create a new blog account, provided the personal details of
the new blogger are verified using the author credentials
database.

Weblog Content Management
System (Cont.)

“Create a new blog account”
Use Case

1. The Administrator asks the system to create a new blog
account.

2. The Administrator selects an account type.

3. The Administrator enters the author's details.

4. The author's details are verified using the Author
Credentials Database.

5. The new blog account is created.

6. A summary of the new blog account's details are
emailed to the author.

Create a new blog
account

REQUIREMENT A.2
The content management system shall allow an administrator to create
a new personal Wiki, provided the personal details of the applying
author are verified using the Author Credentials Database.

Weblog Content Management
System (Cont.)

“Create a new personal
wiki” Use Case

1. The Administrator asks the system to create a new
personal Wiki.

2. The Administrator enters the author's details.

3. The author's details are verified using the Author
Credentials Database.

4. The new personal Wiki is created.

5. A summary of the new personal Wiki's details are
emailed to the author.

Create a new
personal Wiki

The <<include>> Relationship

There is some redundancy between the two use case
descriptions.

 Both Create a new Blog Account and Create a new
Personal Wiki need to check the applicant's
credentials.

This behavior is simply repeated between the two
use case descriptions.

The <<include>> Relationship

This repetitive behavior
shared between two use cases
is best separated and captured
within a totally new use case.

This new use case can then be
reused by the Create a new
Blog Account and Create
a new Personal Wiki use
cases using the <<include>>
relationship.

The <<include>> Relationship
An include relationship from one use case (called the base use case) to
another use case (called the inclusion use case) indicates that the base
use case will include or call the inclusion use case.

An include relationship is shown as a dashed arrow from the base use
case to the inclusion use case marked with the include keyword.

base%use%
case%

inclusion%
use%case%

<<include>>

Means that base use case includes inclusion use case
Or base use case has inclusion use case as a part of it

Why do we use <<include>>?

Using <<include>> removes the need for tedious
cut-and-paste operations between use case
descriptions, since updates are made in only one place
instead of every use case.

The <<include>> relationship gives you a good
indication at system design time that the
implementation of Check Identity will need to be
a reusable part of your system.

WORKSHEET–Exercise 1

Use Case Generalization

Sometimes you'll come across a use case whose behavior can
be applied to several different cases, but with small changes.

For example, if the CMS supports several different types of
blog accounts, such as a regular account with one blog or an
editorial account that can make changes to entries in a set of
blogs.

1. The Administrator asks the system to
create a new blog account.

2. The Administrator selects a regular
account type.

3. The Administrator enters the author's
details.

4. The author's details are verified using
the Author Credentials Database.

5. The new blog account is created.

6. A summary of the new blog account's
details are emailed to the author.

Create a
new regular blog

account

1. The Administrator asks the system to create
a new blog account.

2. The Administrator selects an editorial
account type.

3. The Administrator enters the author's
details.

4. The Administrator selects the blogs that
the account is to have editorial rights over.

5. The author's details are verified using the
Author Credentials Database.

6. The new blog account is created.

7. A summary of the new blog account's
details are emailed to the author.

Create an
editorial blog

account

Create a
new regular blog

account

Create an
editorial blog

account

Create a new blog
account

parent

child

Use Case Generalization
(Cont.)

You can use a use case generalization to
address this situation by factoring out and
reusing similar behavior from multiple use
cases.

A use case generalization is shown as a
solid-line path from the more specific, or
specialized use case to the more general use
case, with a large triangle at the end of the
path connected to the more general use case.

WORKSHEET–Exercise 1

Generalization Between Two
Actors

Some actors are related to each
other.

For example, the Administrator
actor is usually a special kind of
system user.

To show that an administrator can
do whatever a regular user can do
(with some extra additions), a
generalization arrow is used.

http://books.txt.com/1_3Updates/Inheritance.htm

http://books.txt.com/1_3Updates/Inheritance.htm

WORKSHEET–Exercise 2

The <<extend>> Relationship
Provides a means for you to show that a use case might
completely reuse another use case's behavior, similar to
the <<include>> relationship, but that this reuse was
optional and dependent either on a runtime or system
implementation decision

From the CMS example, the Create a new Blog Account
use case might want to record that a new author applied
for an account and was rejected, adding this information
to the author's application history

Record
application failure

Create a new blog
account

<<extend>>

Create a new
personal wiki

<<extend>>

The <<extend>> Relationship
(Cont.)

Child&use&
case&

Parent&use&
case&

<<extend>>

In an extend relationship between two use cases, the child use case adds to the
existing functionality and characteristics of the parent use case.

It is depicted with a directed arrow having a dotted shaft.

The tip of the arrowhead points to the parent use case and the child use case is
connected at the base of the arrow.

The stereotype "<<extend>>" identifies the relationship as an extend relationship.

Relationships between use cases are more about
breaking your system's behavior into manageable
chunks than adding anything new to your system.

The purpose of use case relationships is to provide your
system's designers with some architectural guidance so
they can efficiently break down the system's concerns
into manageable pieces within the detailed system
design.

Use Case Diagram Relationships
(Cont.)

References

• Alhir, S. (2003) Learning UML. Sebastopol: O'Reilly Media, Inc.

•Fowler, M. (2004). UML distilled: a brief guide to the standard
object modeling language. Addison-Wesley Professional.

•Miles, R and Hamilton, K. (2006) Learning UML 2.0.
Sebastopol: O'Reilly Media, Inc.

•UML Training Course from CRaG System,
http://www.cragsystems.co.uk.

http://www.cragsystems.co.uk

